Delaying onion planting to control onion maggot (Diptera: Anthomyiidae): efficacy and underlying mechanisms.
نویسندگان
چکیده
Onion maggot, Delia antiqua (Meigen) (Diptera: Anthomyiidae), is an important pest of onion, Allium cepa L., in northern temperate areas, especially in the Great Lakes region of North America Management of D. antiqua relies on insecticide use at planting, but insecticide resistance can cause control failures that threaten the long-term viability of this strategy. Delaying the time onions are planted was investigated as an alternative management approach for D. antiqua and the ecological and behavioral mechanisms underlying host age and insect relationships were examined in laboratory and field experiments. Delaying onion planting by two to four weeks reduced damage to onions by 35 and 90%, respectively. Onions planted later emerged later and this reduced the period overwintered flies had to oviposit on the plants. Moreover, flies tended to lay few to no eggs on these young, late-planted onions. As anticipated, D. antiqua laid 4-8 times more eggs on older onions than on young onions, and older onions were more resilient to injury caused by D. antiqua neonates compared with younger onions. However, the resiliency to maggot attack lessened as the density of D. antiqua increased from 2 to 10 eggs per plant, which probably explains why greater levels of maggot damage are typically observed in early onion plantings compared with later plantings. Delaying onion planting until mid-May reduced D. antiqua damage without jeopardizing the period required to produce marketable yield, but this cultural tactic must be combined with other management strategies to prevent economic loss.
منابع مشابه
Performance of novel insecticide seed treatments for managing onion maggot (Diptera: Anthomyiidae) in onion fields
Management of onion maggot, Delia antiqua (Meigen), in onion requires the use of an insecticide applied at planting. Insecticide resistance and a dearth of available products have stimulated an effort to identify new insecticides for onion maggot control, especially chemistries that can be delivered as seed treatments. Onion seeds film-coated with fipronil, spinosad, clothianidin or thiamethoxa...
متن کاملNonwoven fiber barriers for control of cabbage maggot and onion maggot (Diptera: Anthomyiidae).
We investigated the use of nonwoven fiber barriers for control of cabbage maggot, Delia radicum (L.), and onion maggot, D. antiqua (Meigen). The barriers consist of arrangements of minute fibers loosely intertwined in "web" form. Results from a greenhouse experiment showed that manually applied graphite fibers placed at the base of broccoli plants reduced the number of D. radicum eggs by 64-98%...
متن کاملSpatial and temporal patterns of onion maggot adult activity and oviposition within onion fields that vary in bordering habitat
In New York, onion [ Allium cepa L. (Alliaceae)] fields often border woods or other vegetable fields. Because onion maggot adults, Delia antiqua (Meigen) (Diptera: Anthomyiidae), spend a significant portion of their time outside of onion fields, surrounding habitat may affect patterns of fly activity and oviposition within onion fields. To better understand these patterns throughout the onion-g...
متن کاملOnion maggot (Diptera: Anthomyiidae) resistance to chlorpyrifos in New York onion fields.
A larval immersion bioassay was developed to identify susceptibility of onion maggot, Delia antiqua (Meigen) (Diptera: Anthomyiidae), to chlorpyrifos and to determine whether this assay could be used to predict control in onion fields. Laboratory colonies were established from larvae collected in New York onion fields during 2003 and 2004, providing us with test insects to use in bioassays. The...
متن کاملChaperonin Contributes to Cold Hardiness of the Onion Maggot Delia antiqua through Repression of Depolymerization of Actin at Low Temperatures
Winter-diapause and cold-acclimated non-diapause pupae of the onion maggot, Delia antiqua (Diptera: Anthomyiidae), show strong cold hardiness. To obtain insights into the mechanisms involved in the enhancement of cold hardiness, we investigated the expression patterns of genes encoding subunits of chaperonin (CCT) and the morphology of actin, a substrate of CCT, at low temperatures. Quantitativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of economic entomology
دوره 104 5 شماره
صفحات -
تاریخ انتشار 2011